

Available online at www.sciencedirect.com

www.elsevier.com/locate/molcata

The metathesis of polyunsaturated fatty esters using the homogeneous $W(O-2,6-C_6H_3X_2)_2Cl_4/Me_4Sn$ catalytic systems

B.B. Marvey, J.A.K. du Plessis, H.C.M. Vosloo*

School of Chemistry and Biochemistry, Potchefstroomse Universiteit vir CHO, 2520 Potchefstroom, South Africa

Abstract

Promoted with a small amount of Me₄Sn, W(O-2,6-C₆H₃X₂)₂Cl₄ (X = Ph, Cl) complexes are highly active metathesis catalysts for polyunsaturated fatty esters. Upon metathesis of methyl linoleate, substrate conversions of ca. 95 and 78% were obtained in 2 h with the W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn and W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic systems respectively. The lower activity of the W(O-2,6-C₆H₃-Cl₂)₂Cl₄/Me₄Sn catalytic system was attributed to the highly deactivating nature of the Cl substituents on the *o*,*o*'-position of the aryloxide ligand. Highly electron-withdrawing Cl substituents cause the tungsten atom to be electron-deficient and thus more susceptible to attack by the electron-rich ester groups. However, the W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn system was more selective towards dicarboxylic esters. The latter are interesting starting materials for the synthesis of polyesters and polyamides. The W(O-2,6-C₆H₃X₂)₂Cl₄/Me₄Sn catalytic systems were rapidly deactivated by bromine-containing olefinic esters. Deactivation was attributed to a side reaction between the Br-group and the electron-deficient W-centre.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Metathesis; Polyunsaturated fatty esters; Methyl linoleate; W(O-2,6-C₆H₃X₂)₂Cl₄ complexes

1. Introduction

Tungsten(VI) aryloxide complexes were earlier reported to be useful precatalysts for the metathesis of alkenes [1–7]. These include W(OAr)₆ [1,2], WO(OAr)₄ [3] and W(OAr)_xCl_{6-x} with x = 2-4 [2,4–7]. Aryloxide ligands offer some advantages in that their electron-withdrawing properties can be varied by changing the substituents on the ring and their steric effect on tungsten can be modified by varying the bulkiness of the substituents on the o,o'-position on the aryloxide [8].

Tungsten(VI) aryloxide complexes provide active metathesis precatalysts for linear, cyclic and functionalised alkenes. Quignard et al. [7] achieved metathesis of internal and terminal alkenes as well as olefinic esters using the *trans*-W(O-2,6-C₆H₃X₂)₂Cl₄ complexes 1 (X = Me, Ph, Cl, F) promoted with a R₄Sn compound. Parameters which influenced metathesis activity upon metathesis of *cis*-2-pentene were: the electron-withdrawing property of the aryloxide ligand, the nature of the cocatalyst and the interaction time between the precatalyst and the

fax: +27-18-299-2350.

cocatalyst. For a given cocatalyst and a given time of precatalyst–cocatalyst interaction, metathesis activity increased with the nature of the substituent in the o,o'-position on the aryloxide in the order: $X = CH_3 < C_6H_5 < F < Cl < Br$.

Self- and cross-metathesis of ethyl oleate, a monounsaturated fatty ester, was achieved using the W(O-2,6-C₆H₃- $X_2)_2$ Cl₄ (X = Cl, Br) complexes promoted with Me₄Sn or Bu₄Pb [7]. In most cases, the catalytic activity was better than that reported for the conventional WCl₆/R₄Sn catalyst system.

Vosloo et al. [9,10] reported the catalysed metathesis reaction of 1-alkenes using complex 1 (X = Cl, Ph) promoted with a R₄Sn compound. The W(O-2,6-C₆H₃X₂)₂Cl₄ precatalysts (X = Cl, Ph) works optimally at 85 °C, a Sn:W molar ratio of 3 and a precatalyst–cocatalyst interaction time of 20 min. Secondary metathesis products resulting from the double bond isomerisation of the 1-alkenes also occur [9]. The W(O-2,6-C₆H₃X₂)₂Cl₄/Me₄Sn catalytic systems deactivate in the presence of oxygenates with W(O-2,6-C₆H₃Ph₂)₂Cl₄ showing more resistance to deactivation.

We have investigated the metathesis activity and selectivity of the W(O-2,6-C₆H₃X₂)₂Cl₄ (X = Cl, Ph) precatalysts promoted with Me₄Sn on the methyl ester of linoleic acid

^{*} Corresponding author. Tel.: +27-18-299-2358;

E-mail address: chehcmv@puk.ac.za (H.C.M. Vosloo).

and a bromine-containing ester mixture. These catalytic systems were found to be active with substrate conversions exceeding 85% and high selectivity (>95%) towards the primary metathesis products (i.e. very little double bond isomerisation). A mixture of simple alkene, monoester and diester metathesis products were obtained.

2. Experimental

2.1. Materials

Chlorobenzene (Aldrich) was dried by refluxing over P_2O_5 , distilled and stored under N_2 . Methyl linoleate (99%, Aldrich) was purified from peroxides by pretreatment with calcined SiO₂-Al₂O₃-HA (24.3% Al₂O₃, AKZO) under a N_2 atmosphere. Tetramethyl tin (Me₄Sn, Aldrich), WCl₆, CCl₄ (Merck), 2,6-dichlorophenol and 2,6-diphenylphenol (Aldrich) were used as purchased.

2.2. Precatalysts

The W(O-2,6-C₆H₃Cl₂)₂Cl₄ and W(O-2,6-C₆H₃Ph₂)₂Cl₄ complexes were prepared as described by Quignard et al. [8]. A solution of HO–2,6–C₆H₃X₂ (2.5 × 10⁻³ mol) in CCl₄ (20 ml) was added to a solution of WCl₆ (5.0×10^{-3} mol) in CCl₄ (20 ml). The reaction mixture was stirred for 4 h under reflux. The W(O-2,6-C₆H₃Ph₂)₂Cl₄ complex was filtered off and washed with hexane to give black microcrystals (79% yield). The W(O-2,6-C₆H₃Cl₂)₂Cl₄ complex was filtered off and recrystallized from ethanol to give black microcrystals with green luster (80% yield). Both complexes decompose slowly in air and were, therefore, stored under N₂ atmosphere.

2.3. Catalytic reactions

The W(O-2,6-C₆H₃X₂)₂Cl₄ precatalyst (X = Cl, Ph; 5.0×10^{-5} mol) was placed in a pear-shaped reaction flask followed by the addition of chlorobenzene (1 ml). The precatalyst mixture was heated to 85 °C after which Me₄Sn (15×10^{-5} mol) was added. After a precatalyst–cocatalyst interaction time of 20 min, the substrate (1.5×10^{-3} mol methyl linoleate or 0.3 ml brominated methyl linoleate mixture) was added. The reaction mixture was allowed to stir at 85 °C. Samples for GC analysis were collected at regular intervals and a few drops of methanol were added to each sample to quench the reaction. After 4 h, the reaction mixture was quenched with methanol, cooled and analysed by GC/MS. In the case of the brominated mixture, the metathesis products were debrominated prior to analysis.

A similar procedure was used for the metathesis of methyl linoleate in the presence of the WCl_6/Me_4Sn catalytic system (W:Sn:ester molar ratio = 1:1:30).

2.4. Product analysis

Samples were collected and analyzed on a GC equipped with a DB-1 capillary column and FID after quenching the reaction by adding a few drops of methanol. GC analyses were performed on a Carlo Erba 6000 Vega series 3 GC equipped with a cold on-column injector, a DB-1 fused silica capillary column (J&W Scientific, $15 \text{ m} \times 0.53 \text{ mm} \times 0.25 \text{ m}$) and FID using the following conditions: carrier gas (He), detector temperature ($300 \,^{\circ}$ C), oven programmed from 100 to $150 \,^{\circ}$ C at $10 \,^{\circ}$ C/min, $150-160 \,^{\circ}$ C at $1 \,^{\circ}$ C/min, $160-280 \,^{\circ}$ C at $15 \,^{\circ}$ C/min. A typical chromatogram is illustrated in Fig. 1. The substrate conversions were calculated from the peak areas of the GC analyses corrected for the molecular

Fig. 1. Gas chromatogram of the metathesis products of methyl linoleate: simple alkenes (peaks: 1–3, 5, 7), monocarboxylic esters (peaks: 4, 6, 8, 10, 12) and dicarboxylic esters (peaks: 9, 11, 13, 14).

response [11,12]:

conversion (%) = $1 - \frac{C_s}{\sum C_i}$

where $i = 1, 2, ..., \xi$; C_s is the corrected peak area for the substrate ester; C_i the corrected peak area for the component *i* in the product mixture with ξ components.

Metathesis products were characterized on a Fisons GC/MS equipped with a DB-5 capillary column (J&W scientific, $15 \text{ m} \times 0.32 \text{ mm} \times 0.25 \text{ m}$). Similar conditions as mentioned above were used.

3. Results and discussion

3.1. Metathesis of methyl linoleate with $W(O-2,6-C_6H_3X_2)_2Cl_4/Me_4Sn$ (X = Cl, Ph)

The metathesis activity of the W(O-2,6-C₆H₃X₂)₂Cl₄/ Me₄Sn (X = Cl, Ph) catalytic system was investigated for polyunsaturated esters. As previously established by Quignard et al. [7] and Vosloo et al. [9,10], a Sn/W molar ratio of 3, reaction temperature of 85 °C and a precatalyst–cocatalyst interaction time of 20 min were employed. Upon activation with a small amount of Me₄Sn (substrate:W:Sn molar ratio of 30:1:3), the W(O-2,6-C₆H₃X₂)₂Cl₄ precatalysts were active for the metathesis of methyl linoleate giving rise to a product mixture consisting of simple alkenes, monoester and diesters (Fig. 1 and Scheme 1 (hydrogens omitted for clarity)). For both catalysts, metathesis equilibrium was attained within 2 h reaction time.

Table 1

Product spectrum resulting from the metathesis of methyl linoleate (*) in the presence of the $W(O-2,6-C_6H_3X_2)_2Cl_4/Me_4Sn$ catalytic systems

Carbon no.	Product	Yield (%)	
		X = Cl	X = Ph
Simple alkene	s		
$C_{12}{}^1$	$C_6 = C_6$	26.64	43.62
C_{15}^{2}	$C_6 = C_3 = C_6$	27.61	21.24
$C_{18}{}^3$	$C_6 = (C_3)_2 = C_6$	3.50	3.87
C_{21}^{4}	$C_6 = (C_3)_3 = C_6$	_	-
C ₂₄ ⁵	$C_6 = (C_3)_4 = C_6$	-	-
Monoesters			
$C_{16}{}^{1}$	$C_6 = C_8 COOC$	8.91	19.10
C_{19}^{2}	$C_6 = C_3 = C_8 COOC^*$	22.46	5.37
$C_{22}{}^3$	$C_6 = (C_3)_2 = C_8 COOC$	1.60	2.72
C_{25}^{4}	$C_6 = (C_3)_3 = C_8 COOC$	0.94	0.40
$C_{28}{}^5$	$C_6 = (C_3)_4 = C_8 COOC$	-	-
Diesters			
$C_{20}{}^1$	COOCC8=C8COOC	5.41	3.01
C_{23}^{2}	COOCC8=C3=C8COOC	2.93	0.82
$C_{26}{}^3$	$COOCC_8 = (C_3)_2 = C_8 COOC$	_	_
$C_{29}{}^4$	COOCC ₈ =(C ₃) ₃ =C ₈ COOC	-	-

Reaction temp. = $85 \degree$ C. Ester:Sn:W = 30:1:3. Reaction time = 2 h.

Table 1 shows the products and the yields obtained in the presence of the W(O-2,6-C₆H₃X₂)₂Cl₄/Me₄Sn catalytic systems. The simple alkenes detected were the monoene compound 6-dodecene (C_{12}^{1}) , the diene compound 6,9-pentadecadiene (C_{15}^2) and the triene compound 6,9,12-octadecatriene (C_{18} ³). The esters detected were the monoesters methyl 9-pentadecenoate (C_{16}^{1}), methyl 9,12,15-heneicosatrienoate $(C_{22}{}^3)$ and methyl 9,12,15,18-tetracosatetraenoate (C_{25}^{4}) , and the diesters dimethyl 9-octadecenoate (C_{20}^{1}) and dimethyl 9,12-heneicosadienoate (C_{23}^2). A methyl linoleate conversion of ca. 95% to metathesis products corresponding to a turnover number (TON) of 28.4 was obtained with the W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system (Fig. 2). The W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic system was slightly less active with a conversion of ca. 78% (Fig. 3). Both the catalytic systems (X = Ph, Cl) were very selective towards primary metathesis products (>95%) with product selectivity increasing in the order alkenes > monoesters > diesters. Figs. 2 and 3 also show the formation of the simple alkenes, monoesters and diesters, and Figs. 4 and 5 the yields of monoenes, dienes, trienes and tetraenes. In terms of unsaturation, selectivity increased in the order monoenes > dienes > trienes > tetraenes.

The W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system gave higher yields for simple alkenes than the W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic system. However, the latter gave higher yields of diesters which are interesting starting materials for the synthesis of polyesters and polyamides [13]. The W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system also yielded more monoenes and trienes relative to the W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic system

Fig. 2. The yields of alkenes resulting from the metathesis of methyl linoleate in the presence of the W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system. Reaction temp. = $85 \,^{\circ}$ C. Ester:Sn:W = 30:1:3. (\bullet) Methyl linoleate; (\blacksquare) total metathesis; (\blacktriangle) simple alkenes; (\blacktriangledown) monoesters; (\blacklozenge) diesters.

which on the other hand gave higher yields of dienes and tetraenes.

Table 2 compares the activities of the tungsten aryloxide complexes with those reported for the classi-

Fig. 3. The yields of alkenes resulting from the metathesis of methyl linoleate in the presence of the W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic system. Reaction temp. = $85 \,^{\circ}$ C. Ester:Sn:W = 30:1:3. (\bullet) Methyl linoleate; (\blacksquare) total metathesis; (\blacktriangle) simple alkenes; (\blacktriangledown) monoesters; (\blacklozenge) diesters.

Fig. 4. The yields of alkenes resulting from the metathesis of methyl linoleate in the presence of the W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system. Reaction temp. = 85 °C. Ester:Sn:W = 30:1:3. (\bigcirc) monoenes; (\square) dienes; (\triangle) trienes; (\diamondsuit) tetraenes.

cal homogeneous WCl₆/Me₄Sn catalyst [14,15]. The W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system was more active than the conventional homogeneous WCl₆/Me₄Sn catalytic system.

Fig. 5. The yields of alkenes resulting from the metathesis of methyl linoleate in the presence of the W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic system. Reaction temp. = 85 °C. Ester:Sn:W = 30:1:3. (\bigcirc) Monoenes; (\square) dienes; (\triangle) trienes; (\diamondsuit) tetraenes.

Table 2				
Metathesis	activitities	of	W(O-2,6-C ₆ H ₃ Cl ₂) ₂ Cl ₄ /Me ₄ Sn	and
WCl6/Me4Sn	catalytic sys	tems	with methyl linoleate as substrate	

Catalyst	Solvent	Ester:W	Temp (°C)	Time (h)	Conversion (%)
$\overline{X = Cl}$	PhCl	30	70	2	77.5
X = Ph	PhCl	30	70	2	94.6
WCl ₆	PhCl	30	85	2	81.1
WCl6 ^a	PhCl	12	60	2	83.2
WCl6 ^b	None	31	80	4	84.0

^a Literature results by Ast et al. [14].

^b Literature results by Verkuijlen and Boelhouwer [15].

3.2. Metathesis of brominated methyl linoleate with $W(O-2,6-C_6H_3X_2)_2Cl_4/Me_4Sn$

A mixture of brominated esters resulting from a 1:1 bromination of methyl linoleate (Scheme 2 (hydrogens omitted for clarity)) was metathesized in the presence of the W(O-2,6-C₆H₃X₂)₂Cl₄/Me₄Sn catalytic systems (X = Ph, Cl). Although a catalytic conversion was observed, there was generally a rapid deactivation of the W(O-2,6-C₆H₃X₂)₂Cl₄/Me₄Sn catalytic systems. The metathesis products obtained after debromination are shown in Table 3. The selectivity for primary metathesis products was >95% and the W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system had more resistance to deactivation than the W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic system.

Fig. 6 compares the yields for simple alkenes, monoesters and diesters for the two systems. The W(O-2,6-C₆H₃Ph₂)₂ Cl₄/Me₄Sn catalytic system displayed a higher selectivity towards simple alkenes and diesters (Fig. 6), and towards monoene, diene and triene compounds (Fig. 7).

3.3. Deactivation

Previous studies have shown that systems derived from the $W(O-2,6-C_6H_3Ph_2)_2Cl_4$ precatalyst are more resistant to deactivation by oxygenates, e.g. butyl acetate, 1-butanol, acetic acid, 2-pentanone and water, than the $W(O-2,6-C_6H_3Cl_2)_2Cl_4$ system [9]. In an air atmosphere its metathesis activity increased, whereas the $W(O-2,6-C_6H_3Cl_2)_2Cl_4$ precatalyst was deactivated. The

Table 3

Debrominated products resulting from the metathesis of 1:1 brominated methyl linoleate (*) with the W(O-2,6-C₆H₃X₂)₂Cl₄/Me₄Sn catalytic systems

Carbon no.	Product	Yield (%)	
		X = Cl	X = Ph
Simple alkene	s		
C_{12}^{1}	$C_6 = C_6$	5.4	9.0
C_{15}^{2}	$C_6 = C_3 = C_6$	6.9	7.1
$C_{18}{}^3$	$C_6 = (C_3)_2 = C_6$	3.0	3.4
C_{21}^{4}	$C_6 = (C_3)_3 = C_6$	-	-
C ₂₄ ⁵	$C_6 = (C_3)_4 = C_6$	-	-
Monoesters			
$C_{16}{}^{1}$	$C_6 = C_8 COOC$	11.7	8.7
C_{19}^{2}	$C_6 = C_3 = C_8 COOC^*$	70.5	68.0
$C_{22}{}^3$	$C_6 = (C_3)_2 = C_8 COOC$	0.7	0.9
C_{25}^{4}	$C_6 = (C_3)_3 = C_8 COOC$	0.4	0.5
C ₂₈ ⁵	$C_6 = (C_3)_4 = C_8 COOC$	-	-
Diesters			
$C_{20}{}^{1}$	COOCC8=C8COOC	1.2	1.6
C_{23}^{2}	COOCC8=C3=C8COOC	0.2	0.8
$C_{26}{}^{3}$	$COOCC_8 = (C_3)_2 = C_8 COOC$	_	-
$C_{29}{}^4$	$COOCC_8 = (C_3)_3 = C_8 COOC$	-	-

Reaction temp. = $85 \degree$ C. Ester:Sn:W = 30:1:3. Reaction time = 6 h.

relatively easy deactivation of the W(O-2,6-C₆H₃Cl₂)₂Cl₄ precatalyst was attributed to the high electron-withdrawing nature of the aryloxide ligand. With a more electron-withdrawing aryloxide ligand, the tungsten metal centre becomes more electrophilic and causes electron-rich oxygenates, to bind more easily with the tungsten atom [9]. However, the phenyl substituent is less electron-withdrawing thus it minimises the competition between the electron-rich

Fig. 6. The yields of alkenes resulting from the metathesis of brominated methyl linoleate in the presence of the W(O-2,6-C₆H₃X₂)₂Cl₄/Me₄Sn catalytic systems. Reaction temp. = 85 °C. Ester:Sn:W = 30:1:3. Reaction time = 6 h. (\blacksquare) Simple alkenes; \blacksquare monoesters; (\Box) diesters.

compounds and the carbon–carbon double bond for the metal centre. As a result, less deactivation is obtained with the phenyl substituent than with the chloride substituent.

Since unsaturated fatty esters have both the olefinic bond and the ester group in the same molecule, deactivation by the ester group is inevitable. Indeed deactivation of the W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic system was greater compared to that of the W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system. The observed difference in the catalytic activity of tungsten-based catalysts could be attributed to the difference in the electron-withdrawing properties of the substituents in the *o*,*o*'-position of the oxoaryl ligands. The highly electron-withdrawing Cl substituent strongly activates the metal center for attack by the ester group. This kind of metal activation is less pronounced when X = Ph.

In the case of brominated alkenes, rapid deactivation could be attributed to the increased interaction between the tungsten atom and the electron-rich bromides, in addition to a side reaction with the ester group. In this regard, two deactivation pathways seem possible, namely, intramolecular and intermolecular coordination of Br and W atom (Scheme 3). Kawai et al. [16] previously proposed similar deactivation pathways for the reaction of bromine-containing alkenes with the Re₂O₇/Al₂O₃ catalytic system.

In the first mechanistic pathway: (1) the bromine atom interacts with the metal center intramolecularly and blocks the coordination site needed for metathesis. Such an interaction leads to the formation of an intermediate that undergoes β -elimination of a hydrogen atom to form a cycloalkene and H–W^{*n*+}–Br complex. The H–W^{*n*+}–Br complex loses HBr by reductive elimination to form W^{(*n*-2)+}. In the second mechanism: (2) deactivation occurs as a result of an intermolecular interaction between the bromine atom of a differ-

ent molecule and the metal to form an intermediate followed by β -elimination of a hydrogen atom.

Deactivation could also occur by reductive elimination of the metal carbene as shown in Scheme 4 [12,17]. Once the metal carbene has formed (3), it could either split productively to form a new alkene (4) or could undergo reductive elimination to form a cycloalkane (5) or an alkene (6).

4. Conclusions

Promoted with a small amount of Me₄Sn, the W(O-2,6- $C_6H_3X_2)_2Cl_4$ (X = Ph, Cl) complexes are active metathe-

sis catalysts for polyunsaturated fatty esters. These catalytic systems are highly selective towards primary metathesis products (>95%). In the presence of the ester group, the W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system shows more resistance against deactivation compared to the W(O-2,6-C₆H₃Ph₂)₂Cl₄/Me₄Sn catalytic system. The relatively lower activity of the W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic system, in the presence of the ester group, result from the highly deactivating nature of the Cl substituents on the o,o'-position of the aryloxide ligand. Highly electron-withdrawing Cl substituents cause the tungsten atom to be electron-deficient and thus more susceptible to attack by the electron-rich ester groups. However, the W(O-2,6-C₆H₃Cl₂)₂Cl₄/Me₄Sn catalytic system is relatively more selective towards dicarboxylic esters which are interesting starting materials for the synthesis of polyesters and polyamides. Generally, the $W(O-2,6-C_6H_3X_2)_2Cl_4/Me_4Sn (X = Ph, Cl)$ catalytic systems are rapidly deactivated by the bromine-containing olefinic esters. Deactivation is the result of a side reaction between the bromine group and the electron-deficient tungsten-centre.

Acknowledgements

For financial support, the authors wish to thank the National Research Foundation of South Africa, the University of the North–West and the Potchefstroom University for CHE.

References

- [1] G. Natta, G. Dall'asta, G. Mazzanti, Ital. Patent 733857 (1964).
- [2] B.V. Maatschappij, Neth. Patent Appl. 7014132 (1972).
- [3] H. Knoche, Ger. Offen. 2024835 (1970).
- [4] H. Hocker, R. Musch, F.R. Jones, I. Luederwald, Angew. Chem. Int. Ed. Engl. 12 (1973) 430.
- [5] H.T. Dodd, K.J. Rutt, J. Mol. Catal. 15 (1982) 103.
- [6] H.T. Dodd, K.J. Rutt, J. Mol. Catal. 28 (1985) 33.
- [7] F. Quignard, M. Leconte, J.-M. Basset, L.-Y. Hsu, J. Mol. Catal. 36 (1986) 13.
- [8] F. Quignard, M. Leconte, J.-M. Basset, L.-Y. Hsu, J. Alexander, S. Shore, Inorg. Chem. 26 (1987) 4272.
- [9] H.C.M. Vosloo, A.J. Dickinson, J.A.K. du Plessis, J. Mol. Catal. A: Chem. 115 (1997) 199.
- [10] H.C.M. Vosloo, C. van Schalkwyk, J.A.K. du Plessis, J. Mol. Catal. A: Chem. 133 (1998) 167.
- [11] R.G. Ackman, J. Gas Chromatogr. (1964) 173.
- [12] B.B. Marvey, H.C.M. Vosloo, J.A.K. du Plessis, J.C. Mol, J. Mol. Catal. A: Chem. 201 (2003) 297.
- [13] P.B. van Dam, M.C. Mittelmeijer, C. Boelhouwer, J. Am. Oil Chem. Soc. 51 (1974) 389.
- [14] W. Ast, G. Rheinwald, R. Kerber, Makromol. Chem. 177 (1976) 39.
- [15] E. Verkuijlen, C. Boelhouwer, J. Chem. Soc., Chem. Commun. (1974) 793.
- [16] T. Kawai, S. Uejima, T. Suzuki, T. Iyuda, J. Mol. Catal. A: Chem. 133 (1998) 51.
- [17] R. Spronk, A. Adreini, J.C. Mol, J. Mol. Catal. 65 (1991) 219.